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Foreword

The detection and classification of antipersonnel land mine has become a topic of very high

priority in recent years. Newer methods employ artifical neural networks for more accu-

rate detection. This research report presents a procedure for landmine detection using a

complex-valued neural network. This is because the acquired data in the form of scattering

parameters at different frequencies are complex-valued and disregard of the phase works

against the proven importance of phase in multidimensional signals. The complex-valued

backpropagation algorithm, clearly and compactly derived, and its variants are implemented

on acquired data to classify mines of different types and shapes. The importance of noise-

contaminated phase as well as the role of partial phase information in image reconstruction

is also investigated. Scopes for further research in this promising area and the use of unsu-

pervised learning in artificial neural networks in conjunction with fuzzy logic for improved

system performance over and above the good results already attained are substantiated.

The role of wavelet superresolution for multiresolution analysis of landmines in par-

ticular and image analysis in general is also reported. Image sequence superresolution (or,

for brevity, superresolution) refers to methods that increase spatial resolution by fusing in-

formation from a sequence of nonidentical images, each uniformly sampled, and acquired in

one or more of several possible ways. This set of nonidentical images, when superimposed,

form a bigger image whose region of support is a nonuniformly sampled raster. Techniques

to achieve high resolution (superresolution) essentially revolve around attempts to convert

this nonuniformly sampled image to an uniformly sampled one. An image acquisition sys-

tem composed of an array of sensors, where each sensor has a subarray of sensing elements

of suitable size, has recently been popular for increasing the spatial resolution with high

signal-to-noise ratio beyond the performance bound of technologies that constrain the man-

ufacture of imaging devices. The technique for reconstructing a high-resolution image from

data acquired by a prefabricated array of multisensors was advanced by Bose and Boo and

this work was further developed by applying total least squares to account for error not only

in observation but also due to error in estimation of parameters modeling the data.
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1 Introduction

A comprehensive REPORT FOR RESEARCH conducted during the period October 1, 2000

to August 31, 2001 was submitted in September 2001 to the Army Research Office [1].

Another PROGRESS REPORT plus a few viewgraphs in MS Power Point with briefing

comments and paper references was submitted to the Army Research Office on March 27

[2]. This report, therefore, is the FINAL RESEARCH REPORT for US ARMY GRANT

DADD19-00-1-0539.

The ideal objectives of a land mine are two fold. First, the goal is to cause as

much damage as is possible with the least amount of material, and second, the avoidance of

detection is crucial so that the first goal can be successfully realized. The second objective

has been of major concern in the task of detecting mines. One of the more promising avenues

of research in this area involves the use of artificial neural networks [3]. More specifically

artifical neural networks have, recently, been used to detect landmines from back-scattered

radio frequency data [5]. The two-port complex-valued scattering parameters, which are the

elements of a 2 × 2 scattering matrix that characterizes the two-port in terms of reflected

and transmitted powers are measured at different selected frequencies [6]. The inputs to the

network were the magnitudes of the four scattering parameters (s11, s12, s21, and s22) at the

seven central frequencies (880-1120MHz) in 40-MHZ intervals. Thus, the phase information

was not exploited. The phase contains the information relating to the occurrence of edges

in an image. This leads one to believe that the use of phase information may help in the

area of edge detection of the landmine so that a preprocessing step in [7]. of fourth-nearest-

neighbor outlier removal of data points would not be necessary since these points would

contain valuable information on the location of the boundaries of a mine. The importance

of using the phase along with the magnitude is also natural because the measured data

is complex-valued. Use of magnitude-only information, therefore, is incompatible with the

nature of the acquired data, especially because valuable information is contained in the

phase, which should not be summarily either discarded or de-emphasized.

During the past decade, the interest in seeking enhancement of spatial resolution lead-
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ing to a high-resolution (HR) image from a sequence of degraded (undersampled, blurred,

and noisy) low-resolution (LR) images has been notable. HR images are required in many

areas including remote sensing, military surveillance and medical diagnosis. Landmine clas-

sification can also be facilitated by superresolution algorithms. It is usually not possible at

the outset to achieve the desired resolution because of technology and cost constraints. For

example, the technology of a charge-coupled device (CCD) is limited by factors like physical

dimension, shot noise and parasitic effects. In applications like astronomical imaging, the

reduced size and weight of a camera in a spacecraft or satellite affect its quality. The need

to perform a trade-off between size, weight, and quality of the CCD array necessitates the

design of superresolution algorithms to obtain the desired HR image.

This research focusses on two superresolution algorithms: one is wavelet-based and

the other is Delaunay triangulation based. Preprocessing is performed prior to the im-

plementation of the superresolution algorithm in order to prevent the singularity problem.

Attention is directed to the selection of the mother wavelet and the mother scaling function.

Then the postprocessing phase incorporating multiframe noise filtering and blur removal fol-

lowing the implementation of the superresolution algorithm is developed. The overall blind

superresolution procedure is illustrated on synthetic sequences and also on video (degraded

by unknown blur and noise) sequences supplied by the Air Force Research Laboratory.

2 List of Appendix

The following figures are listed in the Appendix.

1. Figure 1 supports the importance of phase in the presence of noise for image reconstruc-

tion. Figure 2 shows the overall artificial neural network model for object classification

from partial phase information. It has been concluded that reconstruction from phase

information is more error-resilient than reconstruction from magnitude information

in the presence of additive signal-independent noise. When the phase information is

blurred and noise is added, regularization algorithms improve the the estimate of a
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reconstructed image from degraded phase. Details are available in the M. S. thesis of

Hung-Sik Kim cited in the appropriate section below.

2. Figure 3 shows the the high resolution (HR) reconstuction task decomposed into two

subtasks : interploation and restoration based on the image formation model adopted.

This image formation model is used for atmospheric and motion blur (due to relative

motion between object and image). The blurring process in this model occurs prior

to geometric transformations that are used to characterize video camera motion like

translation, zooming, panning, tilting, and rotation. The procedure for estimating

the blurred HR image is called interpolation. The interpolated image could be noise

filtered using a simple but effective multiframe noise filtering scheme proposed in this

research. The case of unknown blur leads to the important practical case of robust

blind superresolution, also initiated in this research. Superresolution methods based

on first generation wavelets like B-splines and also the spatial tesselation scheme of

Delaunay triangulation are developed and implemented.

3. Figure 4 show typical frames in a video sequence provided by the Air Force Research

Laboratory (AFRL), Rome, New York. The blur and noise, that are sources of degra-

dation, are unknown. Figure 5 is the videomosaic created from research under the

sponsorship of an AFRL grant following camera motion parameter estimation using

the projective model [8]. Two regions of interest (ROIs) are identified in Figure 5.

Figures 6 and 7 compare the high resolution image of the ROIs with the low resolution

counterparts based on blur identification, filtering and superresolution by the method

of Delaunay triangulation developed in this research. Details are available in the Ph.D.

dissertation of Surapong Lertrattanapanich cited in the appropriate section below and

in the peer-reviewed journal paper [9] .

4. The spatial resolution of an image is often determined by imaging sensors. In a charge-

coupled device (CCD) camera, the image resolution is determined by the size of its

photo-detector. Although a CCD camera for HD (High Definition) images has already

4



been developed, it is still necessary to increase the resolution further for SHD (Super

High Definition) images. Reducing the size of pixels (photo-detectors) is one way to

increase resolution. However, the smaller the pixel size is, the smaller is the amount of

light available for each pixel and the picture quality is degraded because the existence

of shot-noise (causing variation of input) is unavoidable. Therefore, a new scheme is

needed to synthesize high resolution images, beyond the physical device performance

bound, by incorporating signal processing techniques. An alternative way is the use

of prefabricated multiple identical image sensors shifted from each other by subpixel

displacements as shown in Figure 10 and then reconstruct a high resolution image

from multiple degraded low resolution images acquired from the multisensor array.

The relationship between low resolution image sensor and hypothetical high resolution

image sensor is shown in Figure 11 and an example is shown in Figure 12. Details

are available in the Ph.D. dissertation of Jaehoon Koo cited in the appropriate section

below and in the peer-reviewed journal papers [10], [10]. .

3 Statement of the Problem Studied

In the Fourier representation of signals, spectral magnitude and phase tend to play different

roles and in some situations, many of the important features of a signal are preserved if only

the phase is retained [4]. For examples, both phase-only and magnitude-only acoustic and

optical holograms have been studied. For phase-only hologram [4](also referred to as kino-

forms) only the phase of the scattered wavefront is recorded and the magnitude is assumed

to be constant while in the magnitude-only hologram the phase is assumed to be zero and

only the magnitude of the scattered wavefront is recorded.

Irregular (nonuniform) sampling theory and its numerical implementation, important

in superresolution from a sequence of low resolution discrete signals, is well developed in the

1-D case due to the work of Kadec and others [12]. Results in the area of efficient robust

reconstruction from irregular samples in the multidimensional case are of more recent vintage
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and even the generalization of 1-D nonuniform sampling results to n-D is far from being

straightforward. The first generation wavelet basis for reconstruction from nonuniformly

sampled data was initially discussed in [13] and the importance of the selection of mother

wavelet and scaling function (generated by discrete filter bank) has been demonstrated in [9].

In the high resolution reconstruction with multisensor array system, speed is impor-

tant as well as the quality of the reconstructed image. The desired algorithm should be

computationally efficient and process data as they are received. Another goal of this re-

search is to investigate various aspects of high resolution image reconstruction like boundary

error, regularization and subpixel displacement error estimation in the design and imple-

mentation of fast and robust algorithms. Interestingly, the multisensor array technology was

designed by NASA to help reduce the costs and time associated with removing, calibrating,

and reinstalling the many sensors on the Space Shuttle launch pads. It is now available for

licensing. (see http://www.edi.gatech.edu/nasa/Multisensor

3.1 The importance of phase in signals and

neural network implementation

In general, with reconstruction from magnitude-only holograms, the reconstructed object is

not of much value in representing the original object whereas reconstructions from phase-

only holograms have many important features in common with the original objects. Many of

features of the original image are clearly identifiable in the phase-only image but not in the

magnitude-only image. Several results for justifying the importance of phase will be shown

with 1-D signal and multi-dimensional signal in this section.

3.2 Wavelet Superresolution

Superresolution produces high-resolution (HR) image from a set of low-resolution (LR)

frames. The relative motions in successive frames are estimated and used for aligning the

sample points in each frame into a HR grid. There are various types of models [8] used
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to represent camera motion, namely, translation, rigid, affine, bilinear, and projective. The

most general model is the projective model which has eight motion parameters. After reg-

istering all LR frames into a HR grid, the available samples distribute nonuniformly. Then

the wavelet superresolution algorithm is applied in order to get the HR image.

During the past decade, the interest in seeking enhancement of spatial resolution

leading to a high-resolution (HR) image from a sequence of degraded (undersampled, blurred,

and noisy) low-resolution (LR) images has been notable. HR images are required in many

areas including remote sensing, military surveillance and medical diagnosis. However, it is

usually not possible at the outset to achieve the desired resolution because of technology

and cost constraints. For example, the technology of a charge-coupled device (CCD) is

limited by factors like physical dimension, shot noise and parasitic effects. In applications

like astronomical imaging, the reduced size and weight of a camera in a spacecraft or satellite

affect its quality. The need to perform a trade-off between size, weight, and quality of the

CCD array necessitates the design of superresolution algorithms to obtain the desired HR

image.

3.3 Multisensor Array Based Superresolution

An image acquisition system composed of an array of sensors, where each sensor has a subar-

ray of sensing elements of suitable size, has recently been popular for increasing the spatial

resolution with high signal-to-noise ratio beyond the performance bound of technologies

that constrain the manufacture of imaging devices. Small perturbations around the ideal

subpixel locations of the sensing elements (responsible for capturing the sequence of under-

sampled degraded frames), because of imperfections in fabrication, limit the performance of

the signal-processing algorithms for processing and integrating the acquired images for the

desired enhanced resolution and quality. With the objective of improving the performance

of the signal-processing algorithms in the presence of the ubiquitous perturbation errors of

displacements around the ideal subpixel locations (because of imperfections in fabrication) in

addition to noisy observation, the errors-in-variables or the total least squares method is de-
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ployed here. A regularized constrained total least squares (RCTLS) solution to the problem

is given that requires the minimization of a nonconvex and nonlinear cost functional. Sim-

ulations indicate that the choice of the regularization parameter influences significantly the

quality of the solution. The L-curve method is deployed to select the theoretically optimum

value of the regularization parameter instead of the unsound but expedient trial-and-error

approach. The expected superiority of this RCTLS approach over the conventional least

squares theory based algorithm is substantiated by example.

4 Summary of the Most Important Results

This research focusses on two superresolution algorithms: one is wavelet-based and the other

is Delaunay triangulation based. Preprocessing is performed prior to the implementation of

the superresolution algorithm in order to prevent the singularity problem. Attention is di-

rected to the selection of the mother wavelet and the mother scaling function. Then the

postprocessing phase incorporating multiframe noise filtering and blur removal following the

implementation of the superresolution algorithm is developed. The overall blind superresolu-

tion procedure is illustrated on synthetic sequences and also on video (degraded by unknown

blur and noise) sequences supplied by the Air Force Research Laboratory. The connection

between wavelet superresolution and DTHR algorithm is analyzed and a promising direction

of future research on blind robust superresolution by using the second generation wavelet is

identified.

The contributions of this research also includes an analysis of the displacement errors

on the convergence rate of the iterative approach for solving the transform based precon-

ditioned system of equations. Subsequently, it is established that the use of the MAP, L2

norm or H1 norm regularization functional leads to a proof of linear convergence of the

conjugate gradient method in terms of the displacement errors caused by the imperfect sub-

pixel locations. Results of simulation support the analytical results. We remark that when

the L2 norm or H1 norm regularization functional is used, the corresponding regularization
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matrices under the Neumann boundary condition can be diagonalized by the discrete cosine

transform matrix. Thus if we use the Neumann boundary condition for both the blurring

matrix HL and the regularization matrix then the coefficient matrix Ht
LHL + αPtP can be

diagonalized by the discrete cosine transform matrix and hence its inversion can be done

with three 2-dimensional fast cosine transforms (one for finding the eigenvalues of the coef-

ficient matrix, two for transforming the right hand side and the solution vector; see [14] for

instance). Thus the total cost of solving the system is of O(M1M2 log M1M2) operations.

Here g is an M1×M2 image and is called the observed high-resolution image. . We interlace

the low resolution images to form an M1 ×M2 image by assigning

g[L(n1 − 1) + l1, L(n2 − 1) + l2] = gl1l2 [n1, n2]. (1)

We have showed that the spectra of the preconditioned matrices are clustered around 1 for

sufficiently small ε̄ [10].

Another important contribution of this research is the regularized constrained total

least squares formulation and solution of the high resolution image reconstruction problem

with multisensors [11]. The regularization parameter used is obtained by the L-curve method

[15]. The numerical algorithm developed is iterative and involves a two-step minimization

strategy at each iteration. Each step, in turn, involves the least-squares solution of a convex

optimization problem, though the overall problem is nonconvex. A characteristic of the

numerical strategy developed is the decrease of the cost functional with increase in the

number of iterations.
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5 Listing of Publications

5.1 Papers Published in Peer-Reviewed Journals

The following papers were published in peer-reviewed journals where support from the grant

was acknowledged.

1. M. K. Ng and N. K. Bose, “Analysis of Displacement Errors in High-Resolution Im-

age Reconstruction,” invited paper in Special Issue on Multidimensional Signals and

Systems, IEEE Trans. Circuits and Systems-I, vol. 49, no. 6, June 2002, pp. 806-813.

2. M. K. Ng, J. Koo and N. K. Bose, “Constrained Total Least Squares Computations for

High-Resolution Image Reconstruction With Multisensors,” Journal of Imaging Science

and Technology, John Wiley and Sons, Inc.,12, no.1, 2002, pp. 35-42.

3. S. Lertrattanapanich and N. K. Bose, “High Resolution Image Formation from Low

Resolution Frames Using Delaunay Triangulation,” IEEE Transactions on Image Pro-

cessing, vol. 17, December 2002.

4. M. K. Ng and N. K. Bose, “Fast Color Image Restoration With Multisensors,” Journal

of Imaging Science and Technology, John Wiley and Sons, Inc., accepted for publica-

tion.

5. M. K. Ng and N. K. Bose, “Mathematical Analysis of Superresolution Methodology,”

IEEE Signal Processing Magazine, 2003, invited paper.

5.2 Papers Published in Peer-Reviewed Conference Proceedings

1. N. K. Bose, S. Lertrattanapanich and J. Koo, “Advances in Superresolution Using L-

curve,” Proceedings of the International Symposium on Circuits and Systems (Sydney,

Australia), Vol. II, May 6-9, 2001, pp. 433-436.
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2. N. K. Bose and S. Lertrattanapanich, “Advances in Wavelet Superresolution,” SAMPTA

2001 Proceedings of the International Conference on Sampling Theory and Its Appli-

cations (Orlando, Florida), May 13-17, 2001, pp. 5-12.

3. S. Lertrattanapanich and N. K. Bose, “High Resolution Image from Multiframes by

Delaunay Triangulation: A Synopsis,” ICIP-02: Proceedings of IEEE International

Conference on Image Processing (Rochester, New York), Vol. 2, September 2002, pp.

22-25.

5.3 Papers Presented in Meetings but not Published in Confer-

ence Proceedings

1. N. K. Bose, “ Towards Blind Robust Superresolution, ” Opening Invited Lecture at

the Workshop on Mathematics in Image Processing, The University of Hong Kong,

December 14, 2000.

2. N. K. Bose, “Groebner Bases, Polynomial Matrix Factorization, Multidimensional Fil-

ter Banks and Wavelets,” Opening Session Invited Lecture at SAMPTA 2001 Pro-

ceedings of the International Conference on Sampling Theory and Its Applications,

Orlando, Florida, May 14, 2001.

6 Advanced Degrees Received by Scientific Personnel

Involved In The Project

The following students were partly supported by funds from the project.

1. Surapong Lertrattanapanich has scheduled his Final Ph. D. Defense on December

10, 2002. His dissertation is entitled “Superresolution from Degraded Image Sequence

Using Spatial Tessellations and Wavelets.”
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2. Jaehoon Koo is expected to schedule his Final Ph. D. Defense by February 28, 2003.

His dissertation is entitled “High Resolution Image Recostruction from Multiple De-

graded Images Acquired with Multisensors.”

3. Hung-Sik Kim received his Master of Science Degree in December 2001. His thesis is

entitled “Reconstruction and Classification of Image from Noisy Phase and its Coding.”

He has now been admitted to the Ph. D. Program.

4. Chih-Chung Yang is working towards his Ph. D. He passed his Comprehensive Exam-

ination on Novemmber 2001 and wrote a dissertation proposal entitled “Automated

Landmine Detection Using Computational Intelligence.”
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7 Appendix of Figures

Figure 1: To evaluate the importance of phase information in the presence of noise in

image reconstruction. Reconstructed image from phase only information has many important

features in common with the original image. Also, reconstruction from noisy phase (and

original magnitude) is more robust to error than reconstruction from noisy magnitude (and

14



original phase). Therefore, phase only information can be used for various applications like

signal reconstruction, landmine classifier, and so on.

Figure 2: To assess the importance of noise-corrupted, degraded and partial phase

information in object classification by artificial neural network (ANN) in applications like

landmine identification and classification. Phase information is more error-tolerant than

magnitude information in terms of signal reconstruction. The number of input neurons can

be reduced to adequate size to simplify ANN and decrease ANN training time. Therefore,

partial phase only information can be used as input data in object classification by ANN

Figures 3: Shows the overall strategy for blind robust superresolution using either

first generation wavelets or spatial tesselation.

Figures 4-9: These figures show selected frames from a real video sequence, panoramic

videomosaic costructed after video camera motion parameter estimation, and the results fol-

lowing implementation of superresolution algorithm (Delaunay triangulation based) on two

selected ROIs in the mosaic.

Figures 10-12: Multiple images mean image sequences of monochrome or multi-

spectral images, here. Image sequences are produced from snapshots of an object or scene,

or from the multisensor array system while multispectral images are acquired by multiple

sensors with wavelength optical filters. For background and notation, see the original paper

by Bose and Boo [16].
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Figure 1: Original image and reconstructed images
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Figure 2: Overall neural network for object classification
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Figure 3: The HR image reconstruction can be divided into two parts: interpolation and

restoration. The image registration is the inverse geometric transformation. It transforms

LR samples into a HR grid. The multiframe blur identification part estimates the point

spread function (PSF) of blur from the set of LR images, either directly or indirectly, and

then used in the restoration part.

Figure 4: Some LR frames in the real video sequence
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Figure 5: Video mosaic with the boundary of ROIs
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Figure 9: HR image of ROI-2
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Figure 10: Image formation systems by using multiple CCD sensor arrays
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Figure 11: The relationship between high and low resolution image sensors
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Figure 12: Example of HR image reconstruction from a set of degraded LR images when

L1 = L2 = 2
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